Skip to main content
Start logging your first experiment in 4 steps:
  1. Create an account/organization at https://pluto.trainy.ai
  2. Install the Python SDK. In your Python environment, install the latest build
    pip install "pluto-ml-nightly[full]"
    
    or the release build
    pip install "pluto-ml"
    
  3. If you haven’t already, request an API key through the terminal via:
    import pluto
    pluto.login()
    
    or login via the shell command
    pluto login <API_KEY>
    
  4. Log your first experiment!
    # hello_pluto.py
    import pluto
    
    config = {'lr': 0.001, 'epochs': 1000}
    run = pluto.init(project="pluto", name="experiment", config=config)
    
    # insert custom model training code
    for i in range(config['epochs']):
        run.log({"val/loss": 0})
    
    run.finish()
    
The code will print out a url where you can view your current run. The web dashboard allows you to compare time series between runs. The output for the above script might be the following.
(pluto) ubuntu@ip-111-111-111-111:~$ python hello_pluto.py
pluto: πŸš€ 19:52:01 | Authentication: logged in as trainy
pluto: πŸš€ 19:52:01 | Interface: find live updates at https://pluto.trainy.ai/o/myorg/projects/my-project/mzHx3
pluto: πŸš€ 19:52:06 | Interface: find 1001 synced entries at https://pluto.trainy.ai/o/myorg/projects/my-project/mzHx3